Journal of Organometallic Chemistry, 241 (1983) 333-342 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

METALLORGANISCHE LEWIS-SÄUREN; METALLKOMPLEXE MIT SCHWACH KOORDINIERTEN LIGANDEN

XI *. ACETYLVERBRÜCKTE KATIONISCHE KOMPLEXE VON MOLYBDÄN, EISEN UND MANGAN; STRUKTUR VON $[(\pi-C_5H_5)(CO)_2Mo(\mu_2-\eta^2-CH_3CO)Mo(CO)_2(\pi-C_5H_5)]^+ BF_4^-$

KARLHEINZ SÜNKEL, KLAUS SCHLOTER, WOLFGANG BECK*

Institut für Anorganische Chemie der Universität München, Meiserstr. 1, 8000 München 2 (B.R.D)

KLAUS ACKERMANN und ULRICH SCHUBERT*

Anorganisch-Chemisches Institut der Technischen Universität München, Lichtenbergstr. 4, 8046 Garching (B.R.D.)

(Eingegangen den 20. Juli 1982)

Summary

The highly reactive complexes $(\pi - C_5 H_5)(CO)_3 MoX (X = FBF_3, FSbF_5)$ react with $(\pi - C_5 H_5)(CO)_3 MoCH_3$, $(\pi - C_5 H_5)(CO)_2 FeCH_3$ or $(\pi - C_5 H_5)(CO)_2 FeCOCH_3$ and cis-, trans-Ph₃P(CO)₄MnCH₃ to give $[(\pi - C_5 H_5)(CO)_2 Mo(\mu_2 - \eta^2 - CH_3 CO) - Mo(CO)_2(\pi - C_5 H_5)]^+ BF_4^- (I), [(\pi - C_5 H_5)(CO)_2 Fe - C(CH_3)O - Mo(CO)_3(\pi - C_5 H_5)]^+ SbF_6^- (II)$ and $[(Ph_3P)(CO)_4 Mn - C(CH_3)O - Mo(CO)_3(\pi - C_5 H_5)]^+ BF_4^- (I)$, respectively. The X-ray structure of I has been determined. It shows a symmetrical acetyl bridge of the type

Zusammenfassung

Die Tetrafluoroborato- und Hexafluoroantimonato-Komplexe $(\pi - C_5H_5)$ -(CO)₃MoX (X = FBF₃, FSbF₅) setzen sich mit $(\pi - C_5H_5)$ (CO)₃MoCH₃, $(\pi - C_5H_5)$ -(CO)₂FeCH₃ oder $(\pi - C_5H_5)$ (CO)₂FeCOCH₃ und *cis-*, *trans-*Ph₃P(CO)₄-

0022-328X/83/0000-0000/\$03.00 © 1983 Elsevier Sequoia S.A.

^{*} X. Mitteilung siehe Ref. 1.

MnCOCH₃ zu $[(\pi - C_5H_5)(CO)_2Mo(\mu_2 - \eta^2 - COCH_3)Mo(CO)_2(\pi - C_5H_5)]^+ BF_4^- (I),$ $[(\pi - C_5H_5)(CO)_2Fe - C(CH_3)O - Mo(CO)_3(\pi - C_5H_5)]^+ SbF_6^- (II)$ und $[(Ph_3P) - (CO)_4Mn - C(CH_3)O - Mo(CO)_3(\pi - C_5H_5)]^+ BF_4^- (III)$ um. Die Röntgenstrukturanalyse von I zeigt eine symmetrische Acetylbrücke des Typs

Durch Umsetzung der hochreaktiven Tetrafluoroboratkomplexe (π -C₅H₅)(CO)₃-MFBF₃ (M = Mo, W) mit Hydrido-Komplexen lassen sich gezielt hydridverbrückte Verbindungen darstellen [2,3]. Allgemein sind solche Komplexe aus Metallhydriden und Metall-Komplexen mit schwach koordinierten anionischen (z.B. BF₄ [2,3], PF₆ [3]) oder Neutral-Liganden [4] zugänglich. Diese Reaktionen lassen sich als Lewis-Säure-Base-Reaktionen auffassen [4]:

$$L_n M^+ + HM'L_n - [L_n M - M'L_n]^+$$

koordinativ und
elektronisch unge-
sättigtes Kation

Nach dem gleichen Prinzip werden auch halogenid- und pseudohalogenidverbrückte Komplexe erhalten [5].

Entsprechend diesem Schema versuchten wir durch Umsetzung der BF₄⁻-bzw. SbF₆⁻-Komplexe $(\pi$ -C₅H₅)(CO)₃MoX (X = FBF₃, FSbF₅) mit verschiedenen Metallalkyl-Verbindungen methylverbrückte Komplexe darzustellen [6]. Bei der Reaktion von $(\pi$ -C₅H₅)(CO)₃MoFBF₃ mit $(\pi$ -C₅H₅)(CO)₃MoCH₃ entsteht jedoch der symmetrisch acetylverbrückte Komplex I

Die Struktur dieser Verbindung mit einer $\mu_2 - \eta^2 - CH_3CO$ -Gruppe wurde röntgenographisch gesichert (vgl. unten). LaCroce und Cutler konnten I vor kurzem auf die gleiche Weise als PF₆-Salz erhalten und aufgrund spektroskopischer Daten die richtige Struktur ableiten [7]. Da I in Lösung scharfe ¹H-NMR-Signale zeigt, ist es diamagnetisch. Daher muss in I eine Mo-Mo-Wechselwirkung vorliegen. Bei unseren Reaktionen erhielten wir keinen Hinweis auf die Bildung eines μ -Acetyl-Komplexes [$(\pi$ -C₅H₅)(CO)₃Mo-C(CH₃)O-Mo(CO)₃(π -C₅H₅)]⁺ [7]. I entsteht auch direkt aus der Reaktion von (π -C₅H₅)(CO)₃MoCH₃ mit Ph₃CBF₄, wobei man annehmen muss, dass sich zunächst durch Methylabstraktion das Kation "(π - $C_5H_5)(CO)_3Mo^+$ "bildet, das sich mit weiterem Methyl-Komplex zu I umsetzt. Die Bildung von I lässt sich leicht verstehen; durch elektrophilen Angriff der Lewis-Säure $(\pi$ - $C_5H_5)(CO)_3Mo^+$ am Sauerstoffatom eines CO-Liganden wird die Methyl-

$$\begin{bmatrix} (\pi - C_5H_5)(CO)_2M_0 - C = OI \quad \bullet \quad ^+M_0(CO)_3(\pi - C_5H_5) \end{bmatrix} \xrightarrow{-CO} I$$

wanderung zum nun "positivierten" C-Atom des CO-Liganden erleichtert. Über die Aktivierung der Methylwanderung in Carbonyl-Komplexen durch Lewissäuren wurde schon früher berichtet [8].

Die η^{1} -acetylverbrückten Komplexe II und III entstehen bei der Umsetzung von $(\pi - C_5H_5)(CO)_3MoX$ (X = FBF₃, FSbF₅) mit $(\pi - C_5H_5)(CO)_2FeCH_3$ oder $(\pi - C_5H_5)(CO)_2FeCOCH_3$ bzw. *cis-*, *trans-*(Ph₃P)(CO)₄MnCOCH₃.

Die Struktur von II, das vor kurzem als PF_6^- -Salz erhalten wurde [7], konnte inzwischen durch eine Röntgenstrukturanalyse bestätigt werden [9].

Charakteristische IR- und NMR-Daten von I–III sind in Tab. 1 zusammengefasst. Die CO-Bande der Acylbrücke von II und III liegt, wie zu erwarten, bei sehr kleinen Wellenzahlen (~ 1480 cm⁻¹). Für I wurde keine charakteristische CO-Absorption der Acylbrücke im IR-Spektrum gefunden. Verschiedene η^1 -acylverbrückte Komplexe wurden bereits früher beschrieben [10]. Eine Acylbrücke wie in I konnte

TABELLE I SPEKTROSKOPISCHE DATEN DER KOMPLEXE I-III

Verbindung	IR	¹ H-NMR (in CD_2Cl_2)		
	ν(CO) (cm ⁻¹)	ν (C=O) (cm ⁻¹)	$\delta(C_5H_5)$ (ppm)	δ(<i>CH</i> ₃ CO) (ppm)
I	2080s,2060vs,2040vs, 2020vs,1995vs,1940vs, 1875s (in KBr)		5.88	2.96
II	2063vs,2049vs,1992vs, 1970vs (in Nujol)	1480	6.03, 5.03	2.52
111	2086m,2062s,1968vs (in Nujol)	1483	6.04, 5.69 (-60°C)	2.67, 2.38 (-60°C)

Über die Ergebnisse der Umsetzungen von $(CO)_5M-CH_3$ (M = Mn, Re) mit $(\pi-C_5H_5)(CO)_3MoFBF_3$ sowie über die Röntgenstrukturanalyse von II wird an anderer Stelle berichtet.

Beschreibung der Struktur von I

Die asymmetrische Einheit von I enthält zwei symmetrie-unabhängige Moleküle, deren Strukturparameter jedoch keine signifikanten Unterschiede aufweisen (Tab. 3).

In I werden zwei $(\pi$ -C₅H₅)(CO)₂Mo-Einheiten jeweils "side-on" durch einen Acetyl-Liganden überbrückt, der symmetrisch zwischen beiden Metallkomplex-Fragmenten lokalisiert ist. Die Abstände der Mo-Atome zu den Brücken-Sauerstoffatomen (Mittel 213(1) pm) sind nur wenig länger als zu den Brücken-Kohlenstoffatomen (Mittel 209(2) pm); es liegt also echte η^2 -Koordination an beide Übergangsmetalle vor. Das zentrale Mo₂CO-Fragment ist längs der C–O-Achse gefaltet: die beiden MoCO-Ebenen schliessen einen Winkel von 86.7° ein, die beiden Mo-Atome nähern sich auf 291.0 pm.

In dem zu I isoelektronischen Komplex $(\pi - C_5 H_5)(OC)_2 Mo(\mu - \eta^2 - CNPh)-Mo(CO)_2(\pi - C_5 H_5)$ [12] wurde eine nicht symmetrisch angeordnete $\sigma - \pi$ -Isocyanidbrücke zwischen den beiden Mo-Atomen gefunden, wobei der Mo-Mo-Abstand mit 323.5 pm grösser ist als in I.

Durch die Koordination an die Metalle sollte sich der C--O-Abstand der Acvl-Einheit verlängern. Obwohl wegen der hohen Standardabweichungen eine detailliertere Diskussion nicht sinnvoll ist, zeigt sich jedoch, dass eine starke Aufweitung, wie sie mit 150(1)pm im analog gebauten Formyl-Komplex $[(\eta^{5}-C_{5}Me_{4}Et)TaCl_{2}]_{2}$ $(\mu$ -H)(μ -CHO) [11] beobachtet wird, in I bei weitem nicht erreicht wird. Jedes der beiden $(\pi - C_{5}H_{5})(CO)_{2}$ Mo-Fragmente besitzt die in pseudooktaedrischen Komplexen der Art $(\pi - C_5 H_5)(CO)_5 ML$ (M = Übergangsmetall) zu erwartende Geometrie. Das in diesen Komplexen auf L gerichtete Orbital zeigt bei I etwa ins Zentrum des jeweiligen (Nachbar-)Mo,C,O-Dreiecks. Die rotamere Einstellung des Acyl-Liganden relativ zu den $(\pi$ -C₅H₅)(CO)₂Mo-Resten ist dagegen in den beiden Molekülhälften von I verschieden (s. Fig. 1). Während an Mo(2) (analog an Mo(3)) die Winkel Mo(1)-Mo(2)-C(CO) bzw. C(10)(O(10))-Mo(2)-C(CO) symmetrisch und der Schwerpunkt des $(\pi$ -C₅H₅)-Rings und Mo(1) ungefähr transständig zueinander sind, ist der $(\pi$ -C₅H₅)(CO)₂Mo-Rest mit Mo(1) als Zentralatom relativ zum Acyl-Liganden so gedreht, dass die beiden C(10)-Mo(1)-C(CO)-Winkel ungefähr gleich werden und der Schwerpunkt des $(\pi$ -C₅H₅)-Ringes ungefähr *trans* zu C(10) ist. Im Formyl-Komplex $[(\eta^5-C_5Me_4Et)TaCl_2]_2(\mu-H)(\mu-CHO)$ [11] findet sich eine vollkommen äquivalente Anordnung der $(\pi - C_5 H_5)TaCl_3$ -Einheiten relativ zum Formyl-Liganden (mit dem Unterschied, dass die Positionen von Kohlenstoff und Sauerstoff gegenüber I vertauscht sind). MO-Rechnungen haben gezeigt [13], dass π -Orbitale von "single-faced"-Acceptor-Liganden mit den Metallorbitalen von $(\pi$ -C₅H₅)(CO)₂M-Fragmenten am besten überlappen können, wenn sie auf der Spiegelebene des $(\pi$ -C₅H₅)(CO)₂M-Fragmentes senkrecht sehen. Der Energieunterschied zu anderen Stellungen ist jedoch klein genug, um z.B. durch sterische Erfordernisse überwunden werden zu können (vgl. [14]). Man kann davon ausgehen, dass in I eine relative Verdrehung der beiden $(\pi - C_5 H_5)(CO)_2 MO-Einheiten$

Fig. 1. Röntgestrukturanalyse von Komplex I.

gegeneinander einer Verminderung sterischer Wechselwirkungen zwischen beiden Metallkomplex-Fragmenten dient.

Experimenteller Teil

Für die Handhabung der empfindlichen metallorganischen Lewissäuren verweisen wir auf frühere Arbeiten [2]. $(C_5H_5)Mo(CO)_3CH_3$ [15a], $(C_5H_5)Fe(CO)_2CH_3$ [15b], $(C_5H_5)Fe(CO)_2COCH_3$ [16] und $(Ph_3P)(CO)_4MnCOCH_3$ [17] wurden nach Literaturangaben erhalten.

Für die IR-Messungen stand ein Perkin-Elmer-Gerät Modell 325, für die ¹H-NMR-Spektren ein JEOL FX-90-NMR-Gerät zur Verfügung.

$\mu_2 - \eta^2 - A \operatorname{cetyl} - (\operatorname{tetracarbonyl})(\operatorname{di} - \pi - \operatorname{cyclopentadienyl}) \operatorname{dimolybdäntetrafluoroborat}(I)$

Umsetzung von $(\pi$ -C₅H₅)(CO)₃MoCH₃ mit Ph₃CBF₄. 0.26 g (0.79 mmol) Ph₃CBF₄ werden in 10 ml CH₅Cl₂ gelöst und bei -27° C mit 0.23 g (0.88 mmol) (π -C₅H₅)(CO)₃MoCH₃ versetzt. Innerhalb von 7 h wird auf $+5^{\circ}$ C gebracht und 6 d bei dieser Temperatur gehalten. Der entstandene Niederschlag wird abgetrennt und nach dem Trocknen IR-spektroskopisch als $[(\pi$ -C₅H₅)Mo(CO)₄]⁺ BF₄⁻ identifiziert. Die Reaktionslösung wird 14 d bei Raumtemperatur gerührt, vom entstandenen Niederschlag abdekantiert und auf 20 ml Et₂O gegossen. Der gelbe Niederschlag wird durch Zentrifugieren isoliert und 2 h im Hochvakuum bei Raumtemperatur getrocknet.

Umsetzung von $(\pi - C_5 H_5)(CO)_3 MoFBF_3$ mit $(\pi - C_5 H_5)(CO)_3 MoCH_3$. Etwa 0.36 g (1.1 mmol) $(\pi - C_5 H_5)(CO)_3 MoFBF_3$ in 10 ml CH₂Cl₂ werden bei -30° C mit 0.39 g

(1.5 mmol) $(\pi$ -C₅H₅)(CO)₃MoCH₃ versetzt und innerhalb von 18 h auf Raumtemperatur gebracht. Durch Zugabe von 25 ml Hexan lässt sich ein orangefarbener Niederschlag fällen, der durch Abdekantieren von der überstehenden Lösung getrennt wird. Es werden 20 ml CH₂Cl₂ zugegeben. Nach einstündigem Rühren wird die Lösung vom Rückstand abpipettiert und mit Hexan versetzt, bis eine Trübung auftritt. Nach 2 d im Kühlschrank wird der entstandene rote Niederschlag mit der CH₂Cl₂-unlöslichen Fraktion vereinigt und im Hochvakuum 3.5 h getrocknet. Aus der CH₂Cl₂/Hexan-Lösung scheiden sich nach mehreren Wochen bei Raumtemperatur rote Kristalle ab, die für die Röntgenstrukturanalyse verwendet werden. (Gef.: C, 33.1; H, 2.41; C₁₆H₁₃BF₄Mo₂O₅ ber.: C, 34.1; H, 2.32%. Molmasse 563.95)

µ-*Acetyl-O-(tricarbonylcyclopentadienylmolybdän)-C-(dicarbonyl-cyclopentadienyleisen) hexafluoroantimonat (II)*

(a) 0.40 g (1.82 mmol) Acetyldicarbonylcyclopentadienyleisen und 0.83 g (1.73 mmol) (π -C₅H₅)(CO)₃MoFSbF₅ werden in 10 ml CH₂Cl₂ bei -25° C gelöst. Es tritt sofort Rotfärbung ein und ein Niederschlag fällt aus, der nach 90 min isoliert wird. Nach dem Waschen mit zweimal 10 ml Ether wird 5.5 h im Hochvakuum getrocknet. Die vereinigten Waschflüssigkeiten werden zur Reaktionslösung gegeben. Der nach 15 h bei -78° C entstehende, kristalline, dunkelrote Niederschlag wird isoliert und 4 h im Hochvakuum getrocknet, wobei ein gelbes Produkt absublimiert.

Aus einer Lösung von II in CD_2Cl_2 fallen nach einigen Tagen rote Kristalle aus, die für eine Röntgenstrukturanalyse verwendet werden. (Gef.: C, 31.2; II, 2.15; $C_{17}H_{13}F_6FeMoO_6Sb$ ber.: C, 29.1; H, 1.87. Molmasse 700.81)

(b) 0.48 g (1.0 mmol) $(\pi$ -C₅H₅)(CO)₃MoFSbF₅ werden in 20 ml CH₂Cl₂ bei -30° C mit 0.21 g (1.1 mmol) $(\pi$ -C₅H₅)(CO)₂FeCH₃ versetzt und innerhalb 24 h auf Raumtemperatur gebracht und 2 d bei dieser Temperatur gerührt. Der entstandene Niederschlag, der $[(\pi$ -C₅H₅)(CO)₃Fe]⁺ SbF₆⁻, $\langle [(\pi$ -C₅H₅)(CO)₃Mo]₂(μ -H))⁺ SbF₆⁻ und eine weitere unbekannte Verbindung enthält, wird abgetrennt. Zur Reaktionslösung werden 30 ml n-Hexan gegeben und auf -30° C gekühlt. Der dabei entstehende Niederschlag (II) wird nach 40 min isoliert und 30 min im Hochvakuum getrocknet. Die verbleibende Reaktionslösung enthält ein Gemisch aus (π -C₅H₅)(CO)₃MoCH₃ und (π -C₅H₅)(CO)₂FeCOCH₃.

μ -Acetyl-O-(tricarbonylcyclopentadienylmolybdän)-C-(tetracarbonyltriphenylphosphanmangan) tetrafluoroborat (III)

Etwa 0.30 g (0.9 mmol) (π -C₅H₅)(CO)₃MoFBF₃ in 10 ml CH₂Cl₂ werden bei -35° C mit 0.45 g (0.95 mmol) Acetyltetracarbonyltriphenylphosphanmangan versetzt. Nach einigen Minuten tritt Verfärbung nach orangebraun ein. Die Reaktionslösung wird nach 2 h mit 15 ml Hexan versetzt. Das nach 15 h bei -78° C entstandene Öl wird isoliert, mit 20 ml Hexan nach 3 h bei -35 bis -15° C zur Kristallisation gebracht und 2.5 h im Hochvakuum getrocknet. (Gef.: C, 46.8; H, 2.90; C₃₂H₂₃BF₄MnMoO₈P ber.: C, 47.8; H, 2.88%. Molmasse 804.17)

Röntgenstrukturanalyse von I

Triklin, a 1006.3(4), b = 1364.7(6), c = 1514.7(5) pm, α 96.20(3), β 87.45(3), γ 115.46(3)°, V 1867 × 10⁶ pm³; Raumgruppe $P\overline{1}$, Z = 4, d(ber.) 2.00 g cm⁻³, d(exp.) 2.0 g cm⁻³. Auf einem Vierkreisdiffraktometer Syntex P2₁ wurden 5858 unabhängige Reflexe (2° $\leq 2\theta \leq 48^\circ$) gemessen (Mo- $K_{\overline{\alpha}}$, Graphit-Monochromator, λ 71.069 pm).

TABELLE 2

ATOMPARAMETER VON I. Der anisotrope Temperaturfaktor ist definiert: $T = \exp[-1/4(h^2a^{\star 2}B_{11} + k^2b^{\star 2}B_{22} + l^2c^{\star 2}B_{33} + 2hka^{\star}b^{\star}B_{12} + 2hla^{\star}c^{\star}B_{13} + 2klb^{\star}c^{\star}B_{23})]; (B_{ij} \text{ in } 10^4 \text{ pm}^2)$

Atom	x/a	y/b	z/c	B _{iso}
 Mo(1)	-0.4335(1)	-0.2933(1)	-0.3880(1)	<u> </u>
Mo(2)	-0.7290(1)	-0.4202(1)	-0.3240(1)	
Mo(3)	-0.7089(1)	0.0854(1)	-0.2032(1)	
Mo(4)	-0.4261(1)	0.2112(1)	-0.1150(1)	
O(10)	-0.548(1)	-0.459(1)	-0.358(1)	0.4(2)
C(10)	-0.519(2)	-0.389(1)	-0.283(1)	7.7(3)
C(12)	-0.241(3)	-0.302(2)	-0.346(2)	13.1(7)
O(12)	-0.141(2)	-0.306(1)	~ 0.331(1)	3.3(3)
C(13)	-0.384(2)	-0.172(2)	-0.287(1)	10.0(5)
O(13)	-0.355(2)	-0.104(1)	-0.233(1)	3.8(3)
C(14)	-0.401(2)	-0.153(1)	-0.471(1)	9.1(4)
C(15)	-0.518(2)	-0.242(1)	-0.511(1)	8.6(4)
C(16)	-0.471(2)	-0.318(2)	-0.542(1)	11.3(5)
C(17)	-0.320(2)	-0.279(2)	-0.522(1)	9.9(5)
C(18)	-0.273(2)	-0.173(1)	-0.482(1)	9.4(4)
C(11)	-0.464(2)	-0.412(2)	-0.198(1)	10.2(5)
C(21)	-0.709(2)	-0.267(2)	-0.320(1)	11.4(5)
O(21)	-0.709(2)	-0.183(1)	-0.316(1)	3.4(3)
C(22)	-0.789(2)	-0.444(1)	-0.456(1)	9.4(4)
O(22)	-0.825(2)	-0.465(1)	-0.525(1)	3.5(3)
C(24)	-0.975(2)	-0.472(1)	-0.283(1)	9.0(4)
C(25)	-0.959(2)	-0.568(1)	-0.309(1)	8.5(4)
C(26)	-0.855(2)	-0.575(2)	-0.256(1)	11.4(5)
C(27)	-0.816(2)	-0.488(2)	-0.187(1)	10.6(5)
C(28)	-0.886(2)	-0.424(2)	-0.206(1)	10.7(5)
O(30)	-0.567(1)	0.042(1)	-0.130(1)	0.5(2)
C(30)	-0.632(2)	0.093(1)	- 0.075(1)	7.6(3)
C(32)	-0.628(2)	0.235(1)	-0.232(1)	8.5(4)
O(32)	-0.595(1)	0.323(1)	-0.256(1)	1.8(2)
C(33)	-0.599(2)	0.057(2)	-0.314(1)	9.8(4)
O(33)	-0.543(1)	0.035(1)	-0.374(1)	1.8(2)
C(34)	-0.943(2)	-0.060(2)	-0.172(1)	10.0(5)
C(35)	-0.922(2)	-0.053(2)	-0.272(1)	10.9(5)
C(36)	-0.916(2)	0.055(1)	-0.285(1)	8.9(4)
C(37)	-0.923(2)	0.113(1)	-0.205(1)	9.5(4)
C(38)	-0.939(2)	0.037(2)	-0.136(1)	4.3(4)
C(31)	-0.704(2)	0.051(2)	0.009(1)	9.8(4)
C(41)	-0.385(2)	0.200(1)	0.012(1)	9.6(4)
O(41)	-0.357(2)	0.198(1)	0.084(1)	2.6(3)
C(42)	-0.495(2)	0.322(1)	-0.058(1)	3.5(3)
O(42)	-0.526(2)	0.389(1)	-0.029(1)	3.0(3)
C(44)	-0.252(2)	0.199(1)	-0.223(1)	9.0(4)
C(45)	-0.301(2)	0.269(1)	-0.252(1)	8.5(4)
C(46)	-0.264(2)	0.361(1)	-0.182(1)	9.2(4)
C(47)	-0.189(2)	0.343(1)	-0.114(1)	8.8(4)
C(48)	-0.182(2)	0.241(1)	-0.141(1)	9.2(4)
F(11)	0.004(2)	0.800(2)	0.397(1)	
F(12)	0.098(2)	0.911(2)	0.527(1)	
F(13)	0.235(3)	0.835(4)	0.446(2)	
F(14)	0.058(7)	0.746(3)	0.503(3)	
B(1)	0.114(4)	0.846(3)	0.471(3)	17.0(11)

Atom	x/a	y/b	z / c	B _{iso}
F(21)	0.963(2)	0.252(2)	0.049(1)	
F(22)	1.143(3)	0.326(3)	-0.055(2)	
F(23)	1.181(3)	0.248(2)	0.058(2)	
F(24)	1.171(3)	0.398(3)	0.095(3)	
B(2)	1.123(5)	0.312(4)	0.032(3)	22.0(16)
H(14)	- 0.3959	-0.0879	-0.4342	5.0
H(15)	-0.6180	-0.2459	-0.5194	5.0
H(16)	-0.5202	-0.3809	-0.5848	5.0
H(17)	-0.2546	-0.3201	-0.5225	5.0
H(18)	-0.1648	-0.1097	-0.4704	5.0
H(24)	-1.0444	-0.4542	-0.3071	5.0
H(25)	-1.0104	-0.6222	-0.3578	5.0
H(26)	-0.7982	-0.6166	-0.2528	5.0
H(27)	-0.7407	-0.4656	-0.1317	5.0
H(28)	-0.8802	-0.3529	-0.1621	5.0
H(34)	- 0.9557	-0.1202	-0.1404	5.0
H(35)	-0.9242	-0.1127	-0.3062	5.0
H(36)	-0.0945	0.0793	-0.3426	5.0
H(37)	- 0.9195	0.1882	-0.1844	5.0
H(38)	-0.9518	0.0499	-0.0685	5.0
H(44)	-0.2732	0.1210	-0.2482	5.0
H(45)	-0.3503	0.2644	-0.3173	5.0
H(46)	-0.2935	0.4251	-0.1842	5.0
H(47)	-0.1396	0.3973	- 0.0586	5.0
H(48)	0.1291	0.2091	-0.1066	5.0

Atom	B ₁₁	B ₂₂	B ₃₃	B ₁₂	B ₁₃	B ₂₃
Mo(1)	2.61(5)	2.44(5)	2.90(6)	1.11(4)	0.31(4)	0.37(4)
Mo(2)	2.55(5)	2.39(5)	2.82(6)	0.91(4)	0.21(4)	0.37(4)
Mo(3)	2.31(5)	2.46(5)	2.81(5)	1.03(4)	0.36(4)	0.27(4)
Mo(4)	2.36(5)	2.61(5)	2.59(5)	0.93(4)	0.43(4)	0.27(4)
F(11)	3.4(9)	4.6(10)	4.9(10)	3.4(8)	-2.8(8)	-1.9(8)
F(12)	5.5(11)	4.7(10)	1.2(7)	2.1(9)	1.2(7)	-2.1(7)
F(13)	5.5(14)	26.7(45)	5.2(14)	12.0(24)	0.0(11)	- 2.9(19)
F(14)	28.7(61)	4.1(15)	10.7(28)	4.8(24)	-12.0(36)	0.3(15)
F(21)	0.2(5)	7.8(13)	3.2(8)	-0.2(7)	-0.8(5)	2.2(9)
F(22)	3.5(10)	11.5(21)	3.4(10)	2.7(12)	1.4(8)	3.7(12)
F(23)	4.6(11)	4.2(11)	9.3(17)	3.3(10)	-0.2(11)	1.5(11)
F(24)	6.3(15)	7.8(18)	13.3(26)	4.4(14)	-6.4(17)	- 9.2(20)

Die Messdaten wurden Lorentz-, Polarisations- und einer empirischen Absorptions-Korrektur unterworfen. Die Schweratome wurden durch MULTAN (Syntex XTL), die übrigen Nicht-Wasserstoffatome durch Differenz-Fourier-Synthesen lokalisiert. Die Wasserstoffatome wurden nach idealer Geometrie berechnet. Verfeinerung der Nicht-Wasserstoffatome nach der Methode der kleinsten Quadrate mit der vollständigen Matrix mit teilweise anisotropen, teilweise isotropen Temperatur-

TABELLE 3

AUSGEWÄHLTE ABSTÄNDE (pm) UND WINKEL (°) IN I (Entsprechende Werte aus beiden unabhängigen Molekülen sind einander gegenübergestellt. M(1)-(4) repräsentiert die Schwerpunkte der C_5H_5 -Ringe)

Mo(1)-Mo(2)	290.8(2)	Mo(3)-Mo(4)	291.(2)
Mo(1)-C(10)	208.2(15)	Mo(3)-C(30)	209.1(16)
Mo(1)-O(10)	214.3(10)	Mo(3)-O(30)	214.2(12)
Mo(1)-C(12)	212(3)	Mo(3)-C(32)	194(2)
Mo(1)-C(13)	204(2)	Mo(3)-C(33)	206(2)
Mo(2)-C(10)	208.1(18)	Mo(4)-C(30)	211.7(16)
Mo(2)-O(10)	213.2(12)	Mo(4)-O(30)	211.8(10)
Mo(2)-C(21)	201(2)	Mo(4)-C(41)	203(2)
Mo(2)-C(22)	207(2)	Mo(4)-C(42)	201(2)
C(10)-O(10)	136(2)	C(30)-O(30)	136(2)
C(10)-C(11)	153(3)	C(30)-C(31)	150(2)
Mo(1)-M(1)	200	Mo(3)-M(3)	200
Mo(2)-M(2)	199	Mo(4)-M(4)	201
Mo(2)-Mo(1)-C(10)	45.7(5)	Mo(3)-Mo(4)-C(30)	47.3(3)
Mo(2)-Mo(1)-O(10)	47.0(3)	Mo(3)-Mo(4)-O(30)	45.9(4)
Mo(2)-Mo(1)-C(12)	124.6(7)	Mo(3)-Mo(4)-C(41)	124.1(6)
Mo(2)-Mo(1)-C(13)	94.3(6)	Mo(3)-Mo(4)-C(42)	91.3(5)
Mo(2)-Mo(1)-M(1)	122.3	Mo(3)-Mo(4)-M(4)	122.6
M(1)-Mo(1)-C(10)	165.0	M(4)-Mo(4)-C(30)	161.4
C(10)-Mo(1)-C(12)	79.8(8)	C(30)-Mo(4)-C(41)	78.3(7)
C(10)Mo(1)-C(13)	81.3(7)	C(30)-Mo(4)-C(42)	85.1(7)
O(10)-Mo(1)-C(12)	85.9(8)	O(30)-Mo(4)-C(41)	90.3(6)
O(10)-Mo(1)-C(13)	118.8(6)	O(30)-Mo(4)-C(42)	121.9(6)
C(12)-Mo(1)-C(13)	84.1(9)	C(41)-Mo(4)-C(42)	83.0(8)
Mo(1)-Mo(2)-C(10)	47.3(3)	Mo(4)-Mo(3)-C(30)	46.6(4)
Mo(1)-Mo(2)-O(10)	45.7(5)	Mo(4)-Mo(3)-O(30)	46.6(3)
Mo(1)-Mo(2)-C(21)	74.6(7)	Mo(4)-Mo(3)-C(32)	70.2(5)
Mo(1)-Mo(2)-C(22)	84.7(5)	Mo(4)-Mo(3)-C(33)	98.0(6)
Mo(1)-Mo(2)-M(2)	163.0	Mo(4)-Mo(3)-M(3)	155.0
M(2)-Mo(2)-C(10)	117.8	M(3)-Mo(3)-C(30)	114.1
C(10)-Mo(2)-C(21)	99.9(8)	C(30)-Mo(3)-C(32)	105.3(7)
C(10)-Mo(2)-C(22)	123.0(7)	^b C(30)–Mo(3)–C(33)	121.3(7)
O(10)-Mo(2)-C(21)	121.7(7)	O(30)-Mo(3)-C(32)	116.2(6)
O(10)-Mo(2)-C(22)	90.6(6)	O(30)-Mo(3)-C(33)	85.5(6)
C(21)-Mo(2)-C(22)	88.9(9)	C(32)-Mo(3)-C(33)	86.1(8)
O(10)-C(10)-C(11)	121.4(14)	O(30)-C(30)-C(31)	121.9(14)
Mo(1)-C(10)-Mo(2)	88.6(6)	Mo(3)-C(30)-Mo(4)	87.6(6)
Mo(1)-O(10)-Mo(2)	85.7(4)	Mo(3)-O(30)-Mo(4)	86.2(4)

faktoren (Wasserstoffatome wurden nicht verfeinert; Atomformfaktoren für ungeladene Atome It. International Tables) konvergierte gegen R = 0.093 und $R_w = 0.111$ für 4887 Strukturfaktoren ($F_0 \ge 5\sigma$). Die Atomparameter sind in Tab. 2, ausgewählte Abstände und Winkel in Tab. 3 wiedergegeben.

Dank

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie gilt unser Dank für die Förderung unserer Arbeiten.

Literatur

- 1 X. Mitteilung: W. Beck, K. Raab, U. Nagel und M. Steimann, Angew. Chem., im Druck.
- 2 W. Beck und K. Schloter, Z. Naturforsch. B, 33 (1978) 1214.
- 3 B.W. Hames und P. Legzdins, Organometallics, 1 (1982) 116.
- 4 L.M. Venanzi, Coord. Chem. Rev., 43 (1982) 251.
- 5 (a) B. Olgemöller und W. Beck, Chem. Ber., 114 (1981) 2360; (b) R. Usón, J. Forniés, P. Espinet, R. Navarro und M.A. Usón, Inorg. Chim. Acta, 33 (1979)L 103; (c) G. Hartmann, R. Froböse, R. Mews und G.M. Sheldrick, Z. Naturforsch. B, Im Druck.
- 6 Bei der Umsetzung von (π-C₃H₅)(CO)₃MoFBF₃ mit (π-C₅H₅)Mo(CO)₃CH₃ wurde zunächst ein methylverbrückter Komplex angenommen: W. Beck, K. Schloter und H. Ernst, abstracts IX. Internat. Conference on Organomettalic Chemistry, C 53, September 1979. Dijon.
- 7 S.J. LaCroce und A.R. Cutler, J. Amer. Chem. Soc., 104 (1982) 2312.
- 8 S.B. Butts, S.H. Strauss, E.M. Holt, R.E. Stimson, N.W. Alcock und D.F. Shriver, J. Amer. Chem. Soc., 102 (1980) 5093; J.P. Collman, R. Finke, J.N. Cawse und J.I. Brauman, J. Amer. Chem. Soc., 100 (1978) 4766.
- 9 U. Nagel, K. Sünkel und W. Beck, unveröffentlicht.
- 10 Vgl., z.B. E.O. Fischer und V. Kiener, J. Organometal. Chem., 23 (1970) 215; A. Mayr, Y.C. Lin, N.M. Boag und H.D. Kaesz, Inorg. Chem., 21 (1982) 1704: G. Erker, K. Kropp, C. Krüger und An-Pei Chiang, Chem. Ber. 115 (1982) 2447 und dort zit. Lit.
- 11 M.R. Churchill und H.J. Wasserman, Inorg. Chem., 21 (1982) 226.
- 12 R.D. Adams, D.A. Katahira und Li-Wu Yang, Organometallics, 1 (1982) 231.
- 13 B.E.R. Schilling, R. Hoffmann und D.L. Lichtenberger, J. Amer. Chem. Soc., 101 (1979) 585.
- 14 U. Schubert, Organometallics, 1 (1982) 1085.
- 15 R.B. King, Organometallic Syntheses, Vol. 1, Academic Press, New York, 1965 (a) S. 145; (b) S. 151.
- 16 R.B. King, J. Amer. Chem. Soc., 85 (1963) 1918.
- 17 K. Noack, U. Ruch und F. Calderazzo, Inorg. Chem., 7 (1968) 345.